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The two-dimensional problem of propagation of elastic waves from a point source in the 
form of an instantaneous impulse in an anisotropic medium baving four elastic constants 
was examined by Sveklo [1] using the Smirnov-Sobolev method of complex solutions D]. 
Since the treatment of this problem presents some difficulties, the solution obtained was 
studied only for media which were restricted by certain conditions on the elastic con- 

stants. In this connection it is expedient to reexamine these solutions and on this basis 

to study in detail the geometric form of the wave fronts. These problems are of interest 

in themselves and are, moreover, necessary for the solution of a number of other problems. 

As in [l] we shall limit ourselves to the study of quasi-longitudinal waves and quasi- 
transverse waves of SV type. since the study of waves of SH type presents no difficulties. 

1, The equatfonr of motfon and their aolutiont. Theequationsof 
motion for anisotropic medium in the two-dimensional case have the form 
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where ~11 are the elastic constants and p is the density of the material. 
The solution of Eqs. (1.1) which characterizes elastic waves in an unbounded aniso- 

tropic medium as a result of an ~s~ntaneous impulse at the origin may be expressed 

as Cl] 
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where the complex variables elr are defined by the relations 

1 - 6& + h,q = 6 (5=X/t* s=Yltf (1.3) 

The quantities hk are determined by the expressions 

h = [(b+df--f&Y +(--&% (6,) “* 
# C 2bd 1 

(k = 1, 2) (1.4) 
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The functions hr and A, are branches of an algebraic function % which is single valued 
on a Riemann surrace whose form depends on the relations among the elastic constants. 
The functions wland w,are branches of an analytic function w which is single valued 
on the Riemann surface. The elastic constants of real media of the indicated class of 

anisotropy satisfy the inequalities 
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a > 4 b > 4 d > 0, ab - (c - d)= > 0 (1.5) 

The form of the Riemann surface and the geometric form of the fronts depend on which 

of the conditions 

N1 = (a - d)(b - d) - Ca > 0, N1 = (a - d)(b - d) - Ca < 0 
N, = (a - d)b - Ca > 0, N, = (a - d)b - Ca < 0 (1.6) 
N, = (b - d)a - c2 > 0, N, = (b - d)o - 9 < 0 

are satisfied. 
The number and location of the branch points of the functions (1.4) in the complex 

planes have been studied in [3] as functions of the relations among the elastic constants. 

It should be borne in mind that here 
Ok==& 

P 
h, = 0knk 

Under the condition N, > 0 the branch points for the outer radicals of (1.4) are the 
points&=fi/l/efork=i andthepointsO,=fi/Jfafork=2. 

The branch points for the inner radical of (1.4) 

&“=f 
M f -f4bdc2 [ c2 - (a - d) (b - d)] “l 

K& (1.7) 

K1 = ab - (c - d)a, K, = ab - (c + d)a 

M = (b + d)N1 - (b - d)(a - b)d 

may be complex, imaginary, or real. Under the condition N1 > 0 all four occur in com- 

plex conjugate pairs; for Nl < 0 all four may be imaginary, or all four real, or two real 

and two imaginary. 
Under the condition N, < 0 the branch 

points for the inner radicals of (1.4) are: 

fork=1,thepoints&=fi/I/~and 
& = f i / I/& for k = 2 the inner 
radical has no branch points. Two of the 
branch points of (1.7) are real, and two 
are imaginary. The real points of (1.7) 
for N, > 0 and for N, < 0 are in the 

Fig. 1 
intervals (f i/JfZ, f coj. 

If the condition N, > 0 is satisfied, 
the Riemann surface is constructed in accordance with [l]. For N, < 0 the function hr 
is single valued in the complex plane 0i with the cuts (--1 / I/a, +1 / 1/ 3, (fl I v & 
-J&‘) and (f&“, f w) along the real axis and (fe,‘, fi=~) along the imaginary 
axis. The function h, is single valued in the complex plane 8, with the cuts (-Eli’, 
+O,O) and (f&O, fm) along the real axis and (fe,“, fim) along the imaginary axis. 

By attaching the edges of the cuts (&Cl,‘, &=)- and (fe,“, fim) of the & and E$ 
planes in a criss-cross manner we obtain the Riemann surface for single-valued defini- 
tion of the function 3, in the case N, < 0 (Fig. 1). 

Under the condition N, > 0 the functions h1 and Aa take on real values on the edges 
of the cuts of the Riemann surface (-i / I/z +i / vi) and (-1 / Jfx +I / I/z), 
whereas if N, < 0 they are real on (_i / vz +I / vi), (fi / l/z &fl,‘) and (-er”, 
+&O) . We specify the values of hl and h, on the Riemann surface by the condition 

that they are positive for Ok = is, where fi is a sufficiently small positive quantity. 
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The relations (1.3) establish a correspondence between the points of the sy-plane and 
the 61 and f12 planes of the Riemann surface. The wave fronts can be obtained as enve- 
lopes of the straight lines (1.3) for real values of 6, and hl, 

hl’t t 
a= - &.-&hl’ 9 7jl =2: - 

II- 81hl' (1.8) 

2.22 
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liz - w!a (1.9) 

The normal velocities of propagation of the waves are given by the expressions [3] 

b= j&&F * bz= f& 
(1.10) 

The functions u?k are the branches of an analytic function w which is unique on a 
two-sheeted Riemann surface, the form of w.hich depends on the relations among the 

elastic constants. In order that the solution (1.2) correspond to elastic waves in an infi- 
nite medium arising from an instantaneous impulsive point load, the function w must be 
chosen so that the real part of WI and w, go to zero on the edges of the cuts in the func- 

tions hi and A,, respectively, when the latter are considered as real functions. Unlike the 
case Ns > .O, which was considered in [l], these cuts are (4 / fz, 4-1 / vq, (f’i /l/z 

f6,“) and (-QlO, Se,‘) for N2 < 0 . 
In [l] the properties of the solution corresponding to the condition N, < 0 were not 

examined. 

2, Geometry of the wave fronts. The condition8 for the sxic- 
tence of cuspidal edges. Since the wave fronts are symmetrical with respect 
to the coordinate axes, it is sufficient to study the portion of the fronts corresponding to 

the upper edges of the cuts in the 61 and 6, planes of the Riemann surface which lie on 
the positive halves of the real axes. Let us select arbitrary points 6i and 6s on these 

parts of the edges of the cuts. The points (Et, rh) and &, Q) on the wave fronts corre- 

spond to these points. Denoting by al and a, the angles between the negative ?I-axis 
and the normals to the fronts at these points, we have 

Denoting by fit and fiZ the angles between the negative q-axis and the rays connec- 
ting the points selected on the wave fronts and the origin, we obtain 

ah = -h’, tgj3, = 4,’ (2.2) 

‘k*k KI K$3kz - M 
-. 

‘k’= 2b&, ’ $,=(-l)k - 
r/Q @k) - ’ 

Under the condition N, > 0 the points of the wave fronts rh - --y’b; and qs = --da 
on the rj -axis correspond to the points 6i = 0 and Ba = 0 ; the points & - v/;; and 
l& - vz on the E-axis correspond to 6, = f /v/a and 6% = 1 f fl . The segments 
of the fronts whose ends are the above points on the coordinate axes correspond to the 
values 

(2.31 

The geometric form of these segments can be investigated with the aid of Eqs. (2.1) 

and (2.2). 
The derivatives of the right sides of (2.1) and (2.2) have the form 
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(2.4) 

1n turn, the functions cplt and Dk have derivatives as follows :. 

Let us examine the cases which are possible under the condition A’s 7 0 according to 

(1.6). 
Case 1. The’elastic constants satisfy the condition N1 7 0. For iV, 7 0 the func- 

tion Q is greater than zero OR the segments (2.3) as on the segments for the real defini- 
tion at the functions (1,4), In accordance with the condition N, 7 0 (1.6) and the ex- 
pression (2.5). the function q1 increases monotonically and % decreases monotonically. 
Under the condition N* 7 0 , the relations 

cpl (0) = 2 > 0, vp2 (1 / 1/z) = Zbd / A:, > 0 
are satisfied. 

Therefore the functions (2.4) have positive values on the intervals (2.3) and the right 
sides of (2.1) increase monotonically from zero to infinity. The angles a1 and a2 there- 
fore increase from 0 to 90” on the intervals (2.3). 

Under the condition Nz 7 0 , the functions DA have the form 

Dl(0) = - 
4d2 [(b -- d) d + c”] 

b-d , &+)=+I(~)] 

DA (0) = - 
4b2 [(b - d) a - cy 

b-d ’ 
D++-+[~2(-+)]’ (‘.” 

at the ends of the intervals (2.3). 
Since according to (1.6), when Nx 7 0 , the condition N3 7 0 is satisfied, the func- 

tions D, have negative values at the ends of the intervals (2.3). 

The derivative of the function D1, Eq. (2.5). on the first interval of (2.3) is either 
smaller than zero or changes sign from negative to positive at the point 

e0 = Jfb - d/ (K, K,ff4 (2.7) 

Therefore, in both cases the function has negative values on this interval. Then hl’:O 
and the right side of the first of Eqs. (2.2) increases monotonically from zero to infinity, 

or the angle & increases monotonicafly on this interval from 0 to 90”. 
The derivative of the function D, on the second interval of (2.3) is either greater than 

zero or changes sign from positive to negative at the point (2.7). In the first case, the 
function D, is a negative, monotonically increasing function. In the second case, the 
point (2.7) is either imaginary or real. Such a real point will be at the end of the inter- 
val (2.3) under study and the function D, will be complex there. In the second case, 
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the point (2.7) lies on the interval in question and the function D, has a minimum there. 
If D, (9,) < 9 the function cZ has negative values on the interval. In these cases 
hz” < 0 and the right side of the second of Eqs. (2.2) increases monotonically from zero 
to infinity on the second interval of (2.3), or the angle fi, increases monotonically from 
0 to 90”. 

If the value of the function D,. is greater than zero at the point (2.7). i.e. 

[3 (b - d) v/lilKP --z(b+d)L+M] I/(b-d) I/K~K~-M+ 

+2[(b+4 I’-KIK,- - (b-d)L]1/2(b-d) dKTK2 >O (2.8) 

then the functions D, and h,” change sign twice on the second interval of (2.3). at the 

points fla = xr and O2 = xl, where 0 < x1 < 9,, < x2 < i / 11-x In the intervals (0, x1) 

and (x,, 1 i 1’2) they are negative, while in the interval (xl, x2) they are positive. As 
in the preceding case, the right side of (2.2) assumes values from zero to infinity in the 

interval in question, but monotonicity of the variation is no longer present ; there is a 
finite maximum at the point x1, and a finite minimum at x, . As a result of this, the 
angle fiz increases monotonically from zero to the value & (x1) in the interval (9, %,), 

then decreases monotonically from flZ (x1) to fiZ (x2) in the interval&r, x,), and increases 
monotonically from pZ (x,) to 90’ in the interval (x2. i / l/a). 

If under the condition Nr > 0 , the condition (2.8) is not satisfied, the angles al, 81 

and a2, l3, increase monotonically from 0 to 90’ on the intervals (2.3). The portions 
of the wave fronts in the fourth quadrants of the 5~ -plane correspond to the intervals 

(2.3) of the upper edges of the cuts of the Riemann surface. These portions of the wave 
fronts are convex curves the ends of which approach the coordinate axes at right angles. 
The wave fronts are closed convex curves with center at the origin. The outer front, cor- 
responding to k = 1, is the front of a quasi-longitudinal wave ; the inner front, corre- 

sponding to k = 2, is the front of a quasi- 

If the condition (2.8) is satisfied, we arrive 
at the same result for the quasi-longitudinal 

wave ; the wave front is a closed convex curve. 
However, we have an entirely different beha- 
vior for the quasi-transverse wave. On the 

Fig. 2 
interval (0, 1 / I/& the angle CL increases 
monotonically from 0 to 90”, and the angle 
bz varies continuously. In the interval (0, ~1) 

it increases monotonically form 0 to & (x1) decreases monotonically from bz (~1) to 
& (x2) in the interval (x,, ~2) and monotonically increases from flZ (xZ) to 90’ in the 

interval 0% 1 / 1%). 
Therefore, the portions of the wave front corresponding to the intervals (0, ~1) and 

(x*, 1 / l/d, are intersecting convex curves in the fourth quadrant. They proceed from 

the points (0, - F’a and (v/z 0) at right angles to the coordinate axes 11 and E. The 
portion of the wave front corresponding to the interval (~1, %) is a concave curve the 
ends of which join the ends of the other two portions in cusps of the first kind. Thus, 
under the condition (2.8) the front of the quasi-transverse wave consists of PieCeWiSe 

Smooth curves which form cuspidal edges. The curves of the normal velocities (in km/ 

/set) and the wave fronts are shown in Fig. 2 for potassium pentaborate [4] 



on the two-dimensional problem of propagation of elastic waves 539 

cl1 = 58.2, cz2 = 35.9, tee = 5.7, cl2 = 22.9 [lOlo dyne/cma] o = i.8g/cm3 

Case 2. The elastic constants satisfy the condition Nr < 0. Under the condition 

N1 < 0 the function ‘pl decreases monotonically and the function qa increases monoton- 
ically in accordance with (2.5). Since 

the functions (2.4) are greater than zero on the corresponding intervals (2.3), and the 
right sides of (2.1) increase monotonically from zero to infinity, or ccl and a, increase 
monotonically from 0 to 90’. 

For N1 < 0 the function D,‘on the second interval of (2.3) is either smaller than zero 
or changes sign from negative to positive at the point (2.7). As a result of this, the func- 
tion D, either decreases monotonically or has a minimum at the point (2.7). 

If the condition N, > 0 is satisfied, the values of the function Dz at the ends of the 
interval are less than zero. In this case, the functions D, and ha” are negative on the 

interval and the angle 6, increases monotonically from 0 to 90”. 
Therefore, under the condition N3 > 0 , the front of the quasi-transverse wave is a 

closed convex curve with center at the origin. 

If the condition Ns < 0 is satisfied, thC function D, has opposite signs at the ends of 

the interval in question,(& 6). i.e. the functions De and &” change sign once on the 
interval, from positive to negative at the point e2 = x1 (for a real value of (2.7), we have 
XI < $ ). The right-hand side of the second of Eqs. (2.2) decreases monotonically from 
zero to a finite value in the interval (0, xs), and increases monotonically from this value 

to infinity in the interval (~1, i / l/d,, changing sign from negative to positive at the 

point 6,*, which is a zero of the function 9%. 
Therefore, the angle pa decreases monotonically from 0 to -6, (~1) in the interval 

(0, xi) and increases monotonically from -& (x1) to 90” in the interval (x1, 1 1 m . 
It is zero at the point t&*. Since the angle cz2 increases monotonically from 0 to 90” 
on the interval (0, i / l/q of the upper edge of the cut in the 0, plane, a portion of the 
wave front consisting of two smooth curves joining in a cusp of the first kind corresponds 
to the interval. 

The portion of the front corresponding to the interval (0, x1) is a concave curve which 
proceeds from the point (0, - vq at a right angle to the n-axis and is situated in the 

third quadrant. The value f12 = x1 correponds to a cusp in the third quadrant of the Eq- 
pIane. The segment corresponding to the interval (x1, 1 /I/d) is a convex curve which 

proceeds from the cusp, cuts the lower r\ semiaxis above the point (0, - 1/dJ, and ap- 

proaches the point (I/&O) through the fourth quadrant at right angles to the E-axis. 
Thus, under the condition N, < 0 (1.6). the front of the quasi-transverse wave consists 

of piecewise smooth curves forming cuspidal edges at the n-axis. 
Under the condition N1 < 0 , the function Dr’in the first interval of (2.3) is either 

greater than zero or changes sign from positive to negative, and the function D1 either 
increases monotonically or has a maximum at the point (2.7). According to (2.6), the 

function Dl can have positive values at some points of the interval if its value at the 
point (2.7) is greater than zero, i. e. 

- 2 I(b + d) VK~K% - (b - d) L] V’2 (b - d) VK~K, > 0 
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In accordance with (2.5), the function Dr’ changes sign on the first interval of (2.3)if 

(b - d)2aa - KIKlir, < 0 (2.10f 

Taking the condition (2.10) into account, we obtain the following inequality : 
(2.11) 

(b + d) v&K2 - - (b - d)L > (b + d)(b - d)e - (b - d)L =(b - d)[(a - d)d + c”] > 0 

For Nr < 0 (1.6). the condition (2.8) is not satisfied, since the function D, is less than 
zero at the point (2.7). Therefore, the condition (2.9) also fails to hold if (2. If) is satis- 

fied. Thus, the functions Dland hr”are smaller than zero in the interval under consider- 
ation and the angle b1 increases monotonically from 0 to 90’. The front of the quasi- 
longitudinal wave front is a closed convex curve. 

Let us now examine the case in which the condition fi,<O is satisfied. Here the 

function hr has real values on the edges of the cuts (--1/I/& +1 / v3 and (f ii I/z, 
f 6,‘) of the &-plane, and the function h, on the edges of the cut (-6r0, -@I’) of the 
@,-plane (Fig, 1). 

We shall investigate the portion of the wave front corresponding to the values 0 \< 

< 9, < 6,“ of the upper edge of the cut in the &-plane. The points of the front (0. 
- T/d) and (1 / &*, 0) located on the ‘n and 4 coordinate axes correspond to the points 
8% = 0 and & = 610, Since for IV, < 0 the condition Nr -< 0 is satisfied, by repeating 
the argument for the case in which the conditions N, > 0 and iv1 < 0 are satisfied we 

see that in the interval in question the right side of the second of Eqs. (2.1) increases 
monotonically from zero to the finite value 6 ,O / h, (Cl,‘), and the angle a%increases 
monotonically from zero to the value a2 (Or”) < SO*. 

Since under condition Ns 2 0 (1.6) the values of the function 0% at the ends of the 
interval are smaller than zero, i. e. Dz (0) = -4b2N, and D, (OIo) = - cx the functions 

D,and h,“have negative values on the interval, and the angle & increases monotonic- 

ally from 0 to 90”. 
Therefore, for N, > 0 (1.6), corresponding to the interval (0, 6,“) there is a portion 

of the wave front in the fourth quadrant which is a convex curve proceeding from the 

point (0, -JfZj t a a right angle to the 71 -axis and approaching the E-axis at the point 

fi i 6;, 0) at an acute angle,since aI (61”) < 90” 
Under the condition N, < 0 the function D, changes sign once from positive to nega- 

tive in the interval (0, 6,‘) at the point 6, = x1, which satisfies the condition xl < 6o 
for a rea1 value of (2.7). The angle pa varies in the same way as on the interval (0, l/ 
/va when the conditions Nr < 0 and N, < 0 are satisfied, so that & (6,‘) = 90” 

The portion of the wave front, as in the case for which Nr < 0 and N, < 0 are satis- 
fied, consists of two smooth curves with opposite signs of curvature which join at a cusp 
of the first kind. Unlike the case of Nr < 0 and iv3 < 0 , the convex curve correspond- 

ing to the interval (xl, 6,‘) approaches the E-axis at the point (1 i 6r”, 0) at an acute 
angle, since we have a? (61”) < 90”. 

The entire argument which was carried through for the examination of the interval 
(0, 1 f vq in the case where the conditions M1 < 0 and IV, < 0 were satisfied for 
N, > 0 remain valid for the condition N, < 0. The edges of the cut (-l/r/a: +1/v;) 
of the 01-plane correspond to the front of the quasi-longitudinal wave, which is a convex 

closed curve intersecting the coordinate axes at the points (&:l/z 0) and (0, f l/g). 
Let us determine what portion of the wave front corresponds to the values 1 ! l/d J< 

< 61 -< Cil” of the lower edge of the cut in the &-plane. On this edge of the cut, the 
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function hi has positive values. The points of the wave front (v 2, 0) and (i ? 9i”, 0) 
located on the positive e-axis correspond to the points 0r = 1 /,fi and 9i= 9r”. Since 

under the condition N, < 0 
n'<o, cp-- 

( 1 

2bd(a-Z) 
;z - Nn co 

the values of the first of Eqs. (2.4) for k = i are less than zero on the interval in ques- 

tion. The right side of the first of Eqs. (2.1) decreases monotonically from infinity to 
the value I&” / h1 (0,‘) = Or” / h, (9,O) and the angle al decreases monotonically from 

90” to the value al (9,‘) = a2 (9r’). For No < 0 the function D1’ is either greater than 
zero or changes sign from positive to negative on the interval in question. However, the 
latter possibility is excluded, since at the ends of the interval 

Dr (1 I l/x) = -!$I (1 I vqla I d < 0, DI (9,o) = + 00 

and the function D1 cannot have a maximum within the interval. Theiefore, the func- 
tions Dr and hr”change sign from negative to positive at a point & = x . 

In the interval (1 / Vi, x) , the right side of the first of Eqs. (2.2) increases monoto- 
nically from --bo to the value [A, (x)] < 0, and the angle fir increases monotonical- 
ly from 90” to fir (x). 

In the interval (x, 9,“) , the right side of the first of Eqs. (2.2)decreases monotonically 

from the value - hr’ (x) to --oo ahd the angle fir decreases monotonically from the 

value PI (x) to 90”. Therefore, the portion of the wave front in the first quadrant cor- 

responds to the lower edge of the cut (1 I 1/ 2, 9,‘). 
One segment of this portion of the front, the one corresponding to the interval (9r0, x), 

is a convex curve which proceeds from the point (1 J Olo, 0) at an acute angle to the 
E-axis and is the continuation of a convex portion of the wave front corresponding to 

the interval (0, 0,‘) of the upper edge of the cut in the complex plane Cl,, since ~r(9r’) = 
= u2 (ely. 

The other segment, corresponding to the interval (x, 2 / V d), is a concave c&e, one 
end of which is joined to the first segment at a cusp of the first kind, and the other end 

of which approaches the g-axis at a 
right angle at the point (T/z, 0) . 

Thus, if the condition N, < 0 is satis- 
fied, the front of the quasi-transverse 

wave consists of piecewise smooth curves 
which form cuspidal edges and are ex- 

pressed by Eqs. (1.9) on the edges of the 
cut (--elo, +e,y and by Eqs. (1.8) on 
the edges of the cuts (f 1 / J’% f 9,‘) 

of the &-plane of the Reimann surface. If N, < 0 and N, > 0 , the wave front has cus- 
pidal edges at the e-axis ; if N, < 0 and N, < 0 , there are cuspidal edges at the c - 

and r-axes. Curves of normal velocities in km/set and the wave fronts are shown in 
Fig. 3 for a medium satisfying the condition N, < 0 and N, < 0. 

As an example we take magnesium sulfate heptahydrate [4] 

Cl1 = 69.8, C‘&? = 52.9, C00 = 22.2, Cl4 = 39, p= 1.7 g/cm3 

The investigation which has just been completed makes it possible: (i) to establish a 
correspondence between the points of the wave fronts and points on the Reimann surface; 
(ii) to study the geometric properties of the wave fronts as they depend on the elastic 
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constants of the medium ; and (iii) to establish the conditions for existence of cuspidal 

edges. Na < 0, N, < 0 , and (2.8). 
The problem of the geometry of the wave fronts has attracted the attention of a num- 

ber of authors ; brief remarks on the basic works are given in [5]. According to [5], the 

condition for the existence of cuspidal edges for media with Nr>O may be expressed 
as B2 (B - 2Nr / d) - 4Nr2 (B - NI / d) I cd < 0 (2.12) 

B = (a + b) + 2 (c - d) 
For potassium pentaborate, ice, cobalt, and beryl [5] the conditions (2.8) and (2.12) 

both assert the presence of cuspidal edges. For beryl with the elastic constants [4] 

err = 26.8, ca3 = 23.5, cd4 = 6.55, era = 6.66 

and for potassium bromide for all values of the elastic constants [4], the conditions (2.8) 
and (2. la) lead to different results ; the condition (2.8) says that there are cuspidal edges, 
while (2.12) denies that there are any. The form of the wave front for potassium bromide 
and the results of experiment presented by Aleksandrov in p] convincingly confirm the 
presence of cuspidal edges on the wave surface of potassium bromide. The construction 
of the wave front for potassium bromide according to Eqs. (1.8) and (1.9) leads to the 

same result. All of this gives grounds for stating that Khatkevich [5] made an error in 
the derivation of the condition (2.12). We remark that Khatkevich [5] correctly pointed 
out an erroneous statement in [8] denying the possibility of satisfying inequalities of the 
type N, < 0 and N, < 0 . For clarity we add that this error was noted considerably 

earlier by the author himself 183 and is examined in [3]. 
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